
Direct Optimization using Automatic Differentiation

ADiGator Package

Burton Yale

ASE387P-6: Optimal Spacecraft Trajectories

Dr. Ryan Russell

December 11th, 2021

What is Automatic Differentiation?

Automatic Differentiation (AD):

• Differentiation of written code to
find derivatives

• Streamlines process of finding
derivatives/updating existing
derivatives

Forward and Reverse Derivatives:

• Forward derivatives: 𝑦′ = 𝑓′(𝑥)

• Reverse derivatives: 𝑥′ = 𝑓(−1)′(𝑦)

function y = f(x)

𝑦 = 𝑓(𝑥) 𝑦′ = 𝑓′(𝑥)

function
𝑑𝑦

𝑑𝑥
= df(x)

Human-in-
the-Loop

Automatic
Differentiation

Symbolic
Differentiation

How AD Works: Function Overloading

• Creates new variable type
• For ADiGator this is cada()

• Function overloading adds new
methods for all functions given this
variable type

• These variables are used to track
operators through a function.

% Overloaded unary math array operations

methods

function y = abs(x)

% CADA overloaded ABS function

global ADIGATOR

if ADIGATOR.OPTIONS.COMPLEX

y = sqrt(real(x).^2 + imag(x).^2);

else

y = cadaunarymath(x,1,'abs');

end

end

function y = acos(x)

% CADA overloaded ACOS function

y = cadaunarymath(x,0,'acos');

end

end

How AD Works: Successive Chain-Rules

• Taking cada() outputs, the function
calls are converted into binary trees of
math operators

• Every node is used to chain derivatives
from the root to variable differentiated.

• Reverse modes switch direction of
chain rules

𝑓 𝑦, 𝑤, 𝑥, 𝑏 = 𝑦 −max(0,𝑤 ⋅ 𝑥 + 𝑏)

⨍

—

max

+

⨉

𝑥𝑤𝑏𝑦

𝜕𝑓

𝜕𝑥
=

𝜕𝑓

𝜕𝑛8
×
𝜕𝑛8
𝜕𝑛7

×
𝜕𝑛7
𝜕𝑛6

×
𝜕𝑛6
𝜕𝑛5

×
𝜕𝑛5
𝜕𝑛1

𝑛1𝑛2𝑛3𝑛4

𝑛5

𝑛6

𝑛7

𝑛8

Rosenbrock: Applying AD to Simple Functions

• To evaluate the effectiveness of AD,
its ability to calculate derivatives
will be compared against the
following
• Symbolically Derived

• Finite Difference Stencils

• Complex Differentiation

• Generation time for Jacobian and
Hessian scripts:
• Jacobian: 0.5 seconds

• Hessian: 2.2 seconds

𝑓 𝑥, 𝑦 = 1 − 𝑥 2 + 100 ⋅ 𝑦 − 𝑥2 2

Rosenbrock: AD vs Symbolics vs Finite Difference

Error vs Symbolic Solution:

• AD proved to be as accurate as both Complex
and Symbolic differentiation

Run Time vs Symbolic Solution

• AD solutions on average 10x slower than
symbolic counterparts

• Finite Difference (FD) 10x slower still to get
comparable error values for Hessians

Methods |Error| Avg. Exe Time

Symbolics 0 2.4233e-06 sec

FD* 3pt 3.7045e-08 7.3599e-05 sec

FD* 5pt 6.5612e-11 1.0546e-04 sec

FD* 7pt 9.2149e-11 1.4798e-04 sec

AD 0 2.2535e-05 sec

Table 2: Error and calculation times for the
Hessian of the Rosenbrock Function

Methods |Error| Avg. Exe Time

Symbolics 0 2.0850e-06 sec

Complex 0 2.7643e-06 sec

FD 3pt 4.0047e-08 2.3589e-05 sec

FD 5pt 3.9738e-11 2.2243e-05 sec

FD 7pt 2.5925e-12 2.4901e-05 sec

AD 0 2.8025e-05 sec

Table 1: Error and calculation times for the
Jacobian of the Rosenbrock Function

*: Jacobian calculated with complex difference.
That Jacobian is then finite differenced

Direct Optimization: Problem Setup

• AD was used to generate Jacobian and
Hessian files of combined objective-
constraint cost function.

• Results will be compared against the
same algorithm using Finite
Differencing for derivative information

• FD algorithm will also use FORTRAN
libraries for Kepler propagation and
parallel processing for derivative
calculation

Direct Optimization: Function Generation

Setup:

• Create MATLAB function file

• Define all inputs and derivative
variables to ADiGator

Limitations:

• Inputs can only be Doubles

• Certain functions note supported
• ODE Solvers
• Switch Statements
• Variable array lengths (!)

Complexity Growth:

• Jacobian File: 2200 lines

• Hessian File: 7800 lines

gx0 = adigatorCreateDerivInput([3*numsegs+1,1]);

ps0 = adigatorCreateAuxInput([6 1]);

plam = adigatorCreateAuxInput([sum(conLen) 1]);

pp = adigatorCreateAuxInput([sum(conLen) 1]);

pweights = adigatorCreateAuxInput([4 1]);

ponOff = adigatorCreateAuxInput([4 1]);

prtarg = adigatorCreateAuxInput([3 1]);

pvtarg = adigatorCreateAuxInput([3 1]);

ptofTarg = adigatorCreateAuxInput([1 1]);

pm0 = adigatorCreateAuxInput([1 1]);

pTbnds = adigatorCreateAuxInput([2 1]);

pg0IspInv = adigatorCreateAuxInput([1 1]);

pnumsegs = adigatorCreateAuxInput([1 1]);

pOptType = adigatorCreateAuxInput([1 1]);

pkhomo = adigatorCreateAuxInput([1 1]);

pmu = adigatorCreateAuxInput([1 1]);

adigatorGenJacFile('cost.m',{gx0, ps0, plam, ...

pp, eqLen, ineqLen, conLen, pweights, ...

ponOff, prtarg, pvtarg, ptofTarg, ...

pm0, pTbnds, pg0IspInv, ...

numsegs, pOptType, pkhomo, pmu})

Listing 1: Setup used to create Jacobian and Hessian functions
for Direct Optimizer

Direct Optimization: 15 Segment – HW4 Problem

Run Settings:

• r∗ = −2, 0, 0

• 𝑣∗ = 0,− Τ1 2 , 0

• 𝛿𝑈𝑉 = 30∘

• 𝑇𝑜𝐹 = 12 𝑇𝑈

• Number of Segments: 15

• Objective: 𝜙 = σ
𝑖

𝑁𝑠𝑒𝑔
Δ𝑣𝑖

2

Direct Optimization: 15 Segment – HW4 Problem

Results: AD Direct
Optimization
ResultsCategory AD FD

Run Time 2.4283 sec 8.747 sec

Final Obj. 0.01327005 0.01296366

Final Const 9.4979e-07 1.2728e-06

Func Calls 4954 16561

Grad Calls 168 134

Kepler Prop 74310 497370

Direct Optimization: 30 Segment – Multi-Rev

Run Settings:

• r∗ = 3cos 𝜃 , 3sin 𝜃 , −0.5

• 𝑣∗ =
𝜇

𝑟∗
−sin 𝜃 , cos 𝜃 , 0

• 𝜃 = 225∘

• 𝛿𝑈𝑉 = 50∘

• 𝑇𝑜𝐹 = 45 𝑇𝑈

• Number of Segments: 30

• Objective: 𝜙 = σ
𝑖

𝑁𝑠𝑒𝑔
Δ𝑣𝑖

2

Direct Optimization: 30 Segment – Multi-Rev

Results: AD Direct
Optimization
ResultsCategory AD FD

Run Time 45.11 sec
DNF

cutoff at 10 min

Final Obj. 0.011913
DNE

9e-9 at cutoff

Final Const 1.1385e-4
DNE

0.063 at cutoff

Func Calls 58515 912624

Grad Calls 2165 4224

Kepler Prop 1755450 54758640

Overall Results

• AD has proven to be a robust method of
calculating derivatives, more accurately than
FD methods (apart from complex
differentiation)

• This pure MATLAB approach provided a
greater than 4x speed improvement over
similar code using parallel processing and
FORTRAN libraries

• AD’s limitations can make it impossible to
implement in edge cases, but similar applies
to helpful methods such as complex
differentiation

Additional Results Appendix

30 Segment – Multi-Rev: Maximizing vf

30 Segment – Multi-Rev: Maximizing vf

30 Segment – Multi-Rev: Minimizing ToF

