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What is Automatic Differentiation?

utomatic Differentiation (AD):

e Differentiation of written code to
find derivatives

. . . : Automatic ,
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Forward and Reverse Derivatives:

* Forward derivatives: y' = f'(x)

» Reverse derivatives: x' = f"D'(y)



How AD Works: Function Overloading

* Creates new variable type
e For ADiGator thisis cada ()

* Function overloading adds new
methods for all functions given this
variable type

e These variables are used to track
operators through a function.

o

% Overloaded unary math array operations
methods

function y = abs (x)
% CADA overloaded ABS function
global
1if ADIGATOR.OPTIONS.COMPLEX
y = sgrt(real (x) .72 + imag(x).”2);
else
y = cadaunarymath(x,1, 'abs');
end
end

function y = acos (x)
% CADA overloaded ACOS function
y = cadaunarymath(x,0, 'acos');
end

end




How AD Works: Successive Chain-Rules

fy,w,x,b) =y —max(0,w - x + b)
e Taking cada () outputs, the function

calls are converted into binary trees of
math operators

* Every node is used to chain derivatives
from the root to variable differentiated.

 Reverse modes switch direction of
chain rules
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Rosenbrock: Applying AD to Simple Functions

fGy) = (1 —0)?+100- (y —x?)?

e To evaluate the effectiveness of AD,
its ability to calculate derivatives
will be compared against the
following
e Symbolically Derived
e Finite Difference Stencils
 Complex Differentiation &

* Generation time for Jacobian and
Hessian scripts:
e Jacobian: 0.5 seconds
* Hessian: 2.2 seconds




Rosenbrock: AD vs Symbolics vs Finite Difference

Error vs Symbolic Solution:

* AD proved to be as accurate as both Complex
and Symbolic differentiation

Run Time vs Symbolic Solution

* AD solutions on average 10x slower than
symbolic counterparts

inite Difference (FD) 10x slower still to get
comparable error values for Hessians

“: Jacobian calculated with complex difference.
That Jacobian is then finite differenced

Methods | Error| Avg. Exe Time
Symbolics 0 2.0850e-06 sec
Complex 0 2.7643e-06 sec
FD 3pt 4.0047e-08 2.3589e-05 sec
FD 5pt 3.9738e-11 2.2243e-05 sec
FD /pt 2.5925e-12 2.4901e-05 sec
AD o) 2.8025e-05 sec
Methods |Error| Avg. Exe Time
Symbolics 0 2.4233e-06 sec
FD" 3pt 3.7045e-08 7.3599e-05 sec
FD* 5pt 6.5612e-11 1.0546e-04 sec
FD* 7pt 9.2149e-11 1.4798e-04 sec
AD 0 2.2535e-05 sec




Direct Optimization: Problem Setup

* AD was used to generate Jacobian and
Hessian files of combined objective-
constraint cost function.

e Results will be compared against the
same algorithm using Finite
Differencing for derivative information

* FD algorithm will also use FORTRAN
libraries for Kepler propagation and
parallel processing for derivative
calculation




Direct Optimization: Function Generation

Setup:
e Create MATLAB function file

* Define all inputs and derivative
variables to ADiGator

Limitations:

* Inputs can only be Doubles

 Certain functions note supported
* ODE Solvers
e Switch Statements
e Variable array lengths

Complexity Growth:
e Jacobian File: 2200 lines

e Hessian File: 7800 lines

gx0 = adigatorCreateDerivInput ([3*numsegs+1l,1]);
psO0 = adigatorCreateAuxInput([6 11]1);

plam = adigatorCreateAuxInput ([sum(conLen) 11]);
pp = adigatorCreateAuxInput ([sum(conLen) 1]);

pweights = adigatorCreateAuxInput ([4 11]1);
ponOff = adigatorCreateAuxInput ([4 11]1);
prtarg = adigatorCreateAuxInput ([3 11]1);
pvtarg = adigatorCreateAuxInput ([3 11]1);
ptofTarg = adigatorCreateAuxInput ([1 11]1);
pmO0 = adigatorCreateAuxInput ([l 11]1);
pTbnds = adigatorCreateAuxInput ([2 1]
pg0IspInv = adigatorCreateAuxInput ([1
pnumsegs = adigatorCreateAuxInput ([1 1
pPOptType = adigatorCreateAuxInput ([1 1
pkhomo = adigatorCreateAuxInput ([1 11]1);
pmu = adigatorCreateAuxInput ([l 11]1);
adigatorGenJacFile('cost.m', {gx0, ps0, plam,

pp, eqlen, ineglen, conLen, pweights,

ponOff, prtarg, pvtarg, ptofTarg,

pm0O, pTbnds, pgOIsplnv,

numsegs, pOptType, pkhomo, pmu})




Direct Optimization: 15 Segment — HW4 Problem

Run Settings:
er*=1-2,0,0]
cv* =10,-/1/;,0]
e 50UV = 30°

e ToF = 12TU

e Number of Segments: 15

* Objective: ¢ = ZlivsegllAvl-II2

Y (LU)




Results:

Category JA\D) FD

Run Time 2.4283 sec 8.747 sec
Final Obj. 0.01327005 0.01296366
Final Const ~ 9.4979e-07 1.2728e-06
Func Calls 4954 16561
Grad Calls 168 134
Kepler Prop 74310 497370
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Direct Optimization: 15 Segment — HW4 Problem

Optimized Solution
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Direct Optimization: 30 Segment — Multi-Rev

Run Settings:
*r* = [3cosH,3sinf,—0.5] P

¢ V* = ”:i” |—sin@,cos8,0]
e § = 225°

* 6UV = 50°

e ToF =45TU

* Number of Segments: 30

* Objective: ¢ = Z;\’SQQIIAUL-II2




Direct Optimization: 30 Segment — Multi-Rev

Optimized Solution

Objective Type: 1
Final Ot :

. 57
ReSU |tS: Norm of C ts: 0.000113851585

Category JA\D) FD
Run Time 45.11 sec cutoff at 10 min
Final Obj. 0.011913 96-9 at cutoff )
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Overall Results

* AD has proven to be a robust method of
calculating derivatives, more accurately than
FD methods (apart from complex
differentiation)

* This pure MATLAB approach provided a
greater than 4x speed improvement over
similar code using parallel processing and
FORTRAN libraries

* AD’s limitations can make it impossible to
implement in edge cases, but similar applies
to helpful methods such as complex
differentiation S P



Additional Results Appendix



30 Segment — Multi-Rev: Maximizing v

Optimized Solution
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30 Segment — Multi-Rev: Maximizing v;




30 Segment — Multi-Rev: Minimizing ToF

Optimized Solution
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